செவ்வாய், 21 ஆகஸ்ட், 2012

தமிழரின் கணக்கதிகாரம் - பிதாகரஸ் கணித கோட்பாடு (Pythagoras Theorem)



தமிழின் பெருமைகள்
நான்கு வரி செய்யுளில் பிதாகரஸ் கணித கோட்பாடு !!!!
இன்று நாம் அனைவரும் சொல்லிக்கொண்டிருக்கின்ற பைதகரஸ் கோட்பாடு (Pythagoras Theorem) என்ற கணித முறையை, பிதாகரஸ் என்பவர் கண்டறிவதற்கு முன்னரே, போதையனார் என்னும் புலவர் தனது செய்யுளிலே சொல்லியிருக்கிறார்.

ஓடும் நீளம் தனை ஒரேஎட்டுக்
கூறு ஆக்கி கூறிலே ஒன்றைத்
தள்ளி குன்றத்தில் பாதியாய்ச் சேர்த்தால்
வருவது கர்ணம் தானே. - போதையனார்


C = (a - a/8) + (b/2)

இக்கணித முறையைக் கொண்டுதான், அக்காலத்தில் குன்றுகளின் உயரம் மற்றும் உயரமான இடத்தை அடைய நாம் நடந்து செல்லவேண்டிய தூரம் போன்றவைகள் கணக்கிடப்பட்டுள்ளன.

போதையனார் கோட்பாட்டின்ன் சிறப்பம்சம் என்னவென்றால், வர்க்கமூலம் (Square root) இல்லாமலேயே, நம்மால் இக்கணிதமுறையை பயன்படுத்த முடியும்.
தமிழன் ஒரு வேலை கற்றலையும்/கல்வியையும்
பொதுவுடமையாகவும், உலகறியச் செய்து இருந்தால் ....
அவர்கள் தரணி எங்கும் அறிய ப்பட்டு இருப்பார்கள் - நன்றி கவிதா பத்மநாபன்

(**** பிழையான விடை கிடைத்தால் எண்களை இடமாற்றிப் பாருங்கள், அண்ணளவான் விடை கிடைக்கும).

 Always choose 'a' as big நம்பர்.

இதில் ௦.5  துல்லியம் மாறலாம்.

யாரவது sqrt கணக்கை கணிப்பான் இல்லாமல் போட்டு காட்டுங்கள்.. வர்க்க அட்டைகளையும் உபயோகிக்காமல்.. அது மிகச் சிரமமான கணித முறை. ஆனால் நமது முன்னோர்கள் அளித்துள்ள கணிதச் சூத்திரம், மிக எளிதான கைகளாலேயே எண்ணிப் போட்டு விடை கண்டு பிடிக்குமளவு நுட்பமாக இருப்பதைக் கவனியுங்கள்.. எனக்கென்னவோ நமது முன்னோர்கள் இதை விட நுட்பமான துல்லியமான சூத்திரங்களை எல்லாம் கையாண்டு இருப்பார்கள் என்று தோன்றுகிறது. கோயில் கட்டிடங்களின் துல்லிய வடிவமைப்பு, அளவுகளைப் பார்க்கும் போது, இதை உணர முடிகிறது. நமது முன்னோர்களின் படைப்புகள், காலத்தாலும், சதிகளாலும் அழிக்கப்பட்டு விட்டன..

Example :
=======

a=15
b=37

பிதாகரஸ் தேற்றம் 

c = sqrt ((15 x 15 ) + (37 x 37))

= sqrt (225+1369)
= sqrt 1594
= 39.92

---------------------------------------------------
போதையனார் தமிழ் way

c = (15 - 15/8) + 37/2

= 13.125 + 18.5
= 31.625 - தவறான விடை..

ஆனால் இலக்கங்களை இடமாற்றிப் பார்ப்போம்..
(ஏனெனில் பிதாரகர்ஸ் தேற்றத்தில் எங்களை இடம் மாற்றினாலும் மதிப்பு மாறாது. ஆனால் இங்கே சமன்பாடு அப்படி அல்ல. எனவே இப்படி முயற்சிப்போம்..)
a = 37
b =15

c = 37 - 37/8 + 15/2

= 32.375 +7.5

= 39.875 --- கிட்டத்தட்ட பிதாகரஸின் விடையை(39.92) ஒத்து அமைகிறது.. 

so 
 Always choose 'a' as Big Number.


Summary :
=======

Pythagoras Theorem C = (a - a/8) + (b/2)

* choose 'a' as Big Number

8 கருத்துகள்:

  1. நீங்கள் போதையானின் பாடலை தவறாக புரிந்து கொண்டிருக்கிறீர்கள் போலும். நீங்கள் இரண்டு வழிகளிலும் செய்து அதனை பைதகரஸ் விடையுடன் எது பொருந்துகிறது என்று பார்த்து பெரிய இலக்கத்தை a இற்கு பிரதியிடுமாறு கூறுகிறீர்கள்... ஆனால் அதை போதையனாரே பாடலில் தெளிவாக குறிபபிட்டுள்ளார்.
    ”ஓடும் நீளம் தனை ஓரே எட்டு கூறு ஆக்கி....”
    பொருள் - நீளமாக ஓடுகின்ற பக்கத்தினை எட்டு கூறுகளாக்கி......... இவ்வாறு பொருள் படுகிறது. அதாவது தரப்பட்ட இரண்டு பக்கங்களில் நீளமான பக்கத்தை a இற்கு பிரதியிட வேண்டும் என அவரே குறிப்பிட்டுள்ளார்.... முதலில் அவரின் பாடலை சரியாக புரிந்து கொள்ளுங்கள்....

    பதிலளிநீக்கு
  2. "போதையனார் தேற்றம்" எனும் மாயை

    சமீப நாட்களாக இணையத்தில் உலாவரும் தமிழின் பெருமைகளைப் பேசும் மின்னஞ்சல்களில்/பதிவுகளில் ஒன்று "போதையனார் தேற்றம்" பற்றியது. "போதையனார் தேற்றத்தின்" சிறப்பம்சம் வர்க்கமூலம்(√) இல்லாமலேயே செம்பக்கத்தினை/கர்ணத்தினை கணிக்க முடிகின்றது என நீளுகின்றது அத்தகவல். ஆனால், இங்கே தமிழ் மொழியின் மீதான பற்றினைப் பயன்படுத்தித் தவறான அல்லது மிகைப்படுத்தப்பட்ட தகவல் வழங்கப்படுகின்றது என்பதே உண்மை.

    இந்த தகவலின் உண்மைத் தன்மையை அறிய கவனிக்கப்பட வேண்டியவை வருமாறு:
    1. இங்கே கணிதவியலின் தர்க்க ரீதியிலான நிறுவுதல்கள் எதுவுமின்றி "தேற்றம்" என்று ஒன்று சொல்லப்படுகின்றது. அடிப்படையில் இங்கே குறிப்பிடப்படும் "தேற்றம்" எனும் சொல், அதன் அர்த்தத்தத்தினை இழந்து நிற்கின்றது.
    2. உதாரணம் ஒன்றினை மட்டும் அடிப்படையாக வைத்து எந்த கணித சமன்பாட்டினையும்/கூற்றினையும் தேற்றம் என்று கூற முடியாது.
    3. ஒரு தேற்றமானது சகல பொருத்தமான தரவுகளிட்கும் உண்மையாக இருத்தல் வேண்டும்.


    இப்போது "போதையனார் தேற்றம்" என்ன சொல்ல விளைகின்றது என்று பார்ப்போம்.

    "ஓடும் நீளம் தனை ஒரே எட்டுக்
    கூறு ஆக்கி கூறிலே ஒன்றைத்
    தள்ளி குன்றத்தில் பாதியாய்ச் சேர்த்தால்
    வருவது கர்ணம் தானே"

    இதற்குக் கொடுக்கப்படும் பொழிப்புரை வருமாறு:
    ஒரு செங்கோண முக்கோணத்தில்:
    கர்ணம் = செம்பக்கம் (செங்கோண முக்கோணத்தில் செங்கோணத்திட்கு எதிர அமைந்துள்ள மிக நீண்ட நீளமுடைய பக்கம்)
    ஓடும் நீளம் = செம்பக்கத்திட்கு அடுத்ததாக நீளமாயுள்ள பக்கம்
    குன்றம் = முக்கோணத்தின் மிகச்சிறிய நீளமுடைய பக்கம்


    தரப்பட்டுள்ள உதாரணத்தின்படி பக்க நீளங்கள் (3, 4, 5) கொண்ட செங்கோண முக்கோணத்தில்:
    ஓடும் நீளம், a = 4
    குன்றம், b = 3

    "போதையனார் தேற்றத்தின்படி",
    c= (a - a/8) + (b/2)
    = 4-(4/8) + (3/2)
    = 5
    கர்ணம், c= 5.

    இந்த ஒரு உதாரணத்தை (அல்லது இவ்விலக்கங்களின் மடங்குகளான (6,8,10), (9,12,15) போன்ற எண்கூட்டங்களை) மட்டும்அடிப்படையாகக்கொண்டு இதனைத் தேற்றமென்று கூறப்படுகின்றது.


    இப்போது "போதையனார் தேற்றத்தின்" உண்மைத்தன்மையினை மற்றைய பைதகரஸ் எண் கூட்டங்களிட்கும் பார்ப்போம்.


    (5,12,13)

    ஓடும் நீளம், a = 12
    குன்றம், b = 5

    "போதையனார் தேற்றத்தின்படி"
    c= (a - a/8) + (b/2)
    = 12-(12/8) + (5/2)
    = 13
    கர்ணம், c= 13.

    இந்த உதாரணமும் சரி வருகின்றது.


    (7,24,25)

    ஓடும் நீளம், a = 24
    குன்றம், b = 7

    "போதையனார் தேற்றத்தின்படி",
    c= (a - a/8) + (b/2)
    = 24-(24/8) + (7/2)
    = 24.5
    கர்ணம், c= 24.5 ≠ 25.

    இங்கே "போதையனார் தேற்றம்" தடுமாற ஆரம்பிக்கின்றது.


    (8,15,17)

    ஓடும் நீளம், a = 15
    குன்றம், b = 8

    "போதையனார் தேற்றத்தின்படி",
    c= (a - a/8) + (b/2)
    = 15-(15/8) + (8/2)
    = 17.125
    கர்ணம், c= 17.125 ≠ 17.

    இதற்கப்பால் எல்லாமே தப்பான முடிவுகள்தான். அதனைவிட கர்ணமானது ஓடும்நீளத்தினை விட சிறிதான இலக்கமாக வருவதும் குறிப்பிடத்தக்கது.


    (9,40,41)
    "போதையனார் தேற்றத்தின்படி",
    கர்ணம், c= 39.5 ≠ 41 (அத்துடன் 39.5 < 40).


    (11,60,61)
    "போதையனார் தேற்றத்தின்படி",
    கர்ணம், c= 58 ≠ 61 (அத்துடன் 58 < 60).


    (12,35,37)
    "போதையனார் தேற்றத்தின்படி",
    கர்ணம், c= 36.625 ≠ 37.


    (13,84,85)
    "போதையனார் தேற்றத்தின்படி",
    கர்ணம், c= 80 ≠ 85 (அத்துடன் 80 < 84).

    இப்படியே (15,112,113), (16,63,65), (17,144,145), (19,180,181), (20,21,29), (20,99,101), (21,220,221), (23,264,265), ...... போன்ற இலக்கங்களுக்கும் தொடர்கின்றது துல்லியமற்ற முடிவுகள். ஆக மொத்தத்தில் போதையனார் கூறியது இரண்டு சந்தர்ப்பங்களுக்கு மட்டுமே பொருந்தும் ஒரு கூற்று. "தேற்றம்" கிடையாது. ஆக மொத்தத்தில் ஒரு செம்பக்க முக்கோணத்திற்கு பைதகரஸ் தேற்றத்திற்கு பதிலாக "போதையனார் தேற்றத்தினை"ப் பயன்படுத்தினால் பெறப்படும் விடைகளானது மேற்குறிப்பிட்ட இரண்டு சந்தர்ப்பக்கங்கள் (3,4,5), (5,12,13) (அல்லது அவற்றின் மடங்குகள்) தவிர்ந்த அனைத்து சந்தர்ப்பங்களிலும் துல்லியமற்ற முடிவுகளாகவே இருக்கும்

    பதிலளிநீக்கு
  3. போதையனார் என்று ஒருவர் உண்மையில் இருந்தாரா? இருந்திருந்தால் அவர் தமிழராய் இருந்தாரா? அவர் எழுதிய மிகுதிப் பாடல்கள் எங்குள? ஓரிடத்திலும் மேலே கூறிய செய்யுளைத் தவிர மற்றையவை பற்றித் தகவல்கள் இல்லை. வலையில் தேடியதில் அறிந்தது மேற்குறிப்பிட்ட சூத்திரம் சமஸ்கிருதத்தில் எழுதப்பட்டுள்ளது என்பதே. https://en.m.wikipedia.org/wiki/Baudhayana_sutras

    பதிலளிநீக்கு
  4. இல்லாத ஒன்றை இருப்பதாயும், இருப்பதை அளவுக்கதிகமாய் மிகைப் படுத்தியும் சில தமிழ்க் கிறுக்கர்களினால் வெளியிடப்படும் ஆதாரம் அற்ற தகவல்களை வாசிப்பதினால் ஏற்படும் வெறுப்பினால் நாம் பல உண்மையான தகவல்களையும் வாசிக்காமல், கேட்காமல் ' பார்க்காமல் விட்டுவிடுகிறோம்.

    பதிலளிநீக்கு